
JIDEP - 101058732

PROJECT DELIVERABLE REPORT
Grant Agreement Number: 101058732

Joint Industrial Data Exchange Platform
Type: Other

D3.2 Report on Tools Developed for Schema and
Dataset Alignment and Knowledge

GraphDevelopment

Issuing partner UNITN
Participating partners UCAM, TVS
Document name and revision D3.2 Report on Tools developed for schema

and dataset alignment and KG development
Author(s) Simone Bocca

Rasel Ahmed (TVS)
Deliverable due date 2024-June-01
Actual submission date

Project Coordinator Vorarlberg University of Applied Sciences
Tel +43 (0) 5572 792 7128
E-mail florian.maurer@fhv.at
Project website address www.jidep.eu

Dissemination Level
PU Public
PP Restricted to other programme participants (including the Commission

services)
CO Confidential, only for members of the consortium (including the

Commission services)
SE
N

Sensitive, limited under the conditions of the Grant Agreement ✓

Copyright © JIDEP Project Consortium 2022

1



JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

2



JIDEP - 101058732

Content
1. Introduction 4
1.1 Executive Summary 4
1.2 Intended Audience 4
2. The iTelos Process 5
2.1 iTelos Process Requirements 5
3. The iTelos Framework 7
3.1 Purpose Formalisation Tools 7
3.2 Data collection tools 10
3.3 Domain Languages Alignment Tool 12
3.4 Schema Alignment Tool 15
3.5 Data Mapping Tool 16
3.5.1 Karmalinker Semi-automatic Mode 19
3.5.2 Download and Set-up Instructions 20
3.6 KG-builder tool 21
3.6.1 Requirements and set up 22
3.6.2 Usage 22
3.6.3 Deployment and DLT platform integration 23
4 Conclusions 27
5 Updates since the last version 27
References 28
Acronyms and Abbreviations 28

Copyright © JIDEP Project Consortium 2022

3



JIDEP - 101058732

1. Introduction
1.1 Executive Summary

This is the first version of the deliverable describing how the Knowledge Graph (KG)
generation process, defined by the iTelos methodology, is supported by a dedicated
framework, composed of different tools. In the context of the JIDEP European
project, the iTelos framework aims to provide a concrete implementation of the iTelos
methodology for the generation of reusable KGs. The framework, here described,
supports the implementation of the methodology executed by a human user.
Nevertheless, some of the tools, composing the whole framework, are designed to
be integrated into the JIDEP Distributed Ledger Technology (DLT) platform (see
D3.4) as semi-automatic tools. The different tools aim at producing different
intermediate outputs, along the iTelos phases. The key idea, introduced by the iTelos
methodology, is to compose the different tools, by considering as input of each tool,
the output of the tool executed previously, following the methodology. Such an
approach, in the iTelos implementation, aims at reducing the effort in the execution of
the different activities required to build a KG. Moreover, the objective is to provide a
complete set of tools for KG generation, starting from the formalisation of the
requirements, until the generation of a unique object (file or set of files) representing
the final KG. The current deliverable reports the description of each tool adopted
along the iTelos methodology, as well as how to use them to achieve the desired
results.

The current section of the deliverable reports the executive summary of the
document together with the description of the intended audience. Section 2
describes the implementation of the iTelos process, by defining the requirements to
be satisfied at each phase of the methodology. Section 3 describes which are the
different tools included in the iTelos framework, adopted to satisfy the requirements
described in the previous section. In this section the deliverable reports how the tools
are structured, which is the objective for which they have to be used, together with
their inputs, outputs and the usage instructions. Sections 4 concludes the deliverable
with the conclusions, and section 5 provides a summary of the details that have been
updated from the previous version of the deliverable.

1.2 Intended Audience
The intended audience for this report is composed of the following subjects:

- JIDEP project technical roles: subjects involved in the JIDEP project, having
technical competencies, and mainly working over the implantation of the DLT
platform.

- Data scientists: technical subjects involved in the iTelos methodology process,
by acting over the data management activities (data collection, cleaning and
formatting).

Copyright © JIDEP Project Consortium 2022

4



JIDEP - 101058732

- Knowledge engineers: technical subjects involved in the iTelos methodology
process, by acting over the knowledge management activities (reference
ontology collection, schema modelling, schema alignment).

2. The iTelos Process
In this section, it is reported a description of the whole process supporting the iTelos
methodology described in D3.1 (final version). The process is supported by a
dedicated framework, composed of different tools which aim at supporting the
different phases of the methodology for KGs generation. For each iTelos phase,
there are requirements to be satisfied. Such requirements need to be covered by the
tools adopted to implement the KG generation process. The sub-section 2.1 aims to
describe which are the requirements to be satisfied for each iTelos phase, to clarify
the usage of the tools in the relative phases.

2.1 iTelos Process Requirements
The requirement set for the entire process implementing the iTelos methodology is
distributed along the different iTelos phases. Each phase has its specific objective in
the KG generation process. For this reason, within each phase, a specific set of
sub-requirements needs to be satisfied in order to provide the proper input to the
next phase, thus proceeding with the whole process. Here below is the list of all the
main requirements to be satisfied, together with the reference iTelos phase in which
they have to be achieved. In the next section, the report will describe how these
requirements are satisfied by using specific tools.

● Formalisation of the Initial Purpose: the first key requirement to be satisfied
is the formalisation of the initial purpose. This requirement is included in the
first phase of the methodology. Nevertheless, in specific cases, where a
proper level of formalisation for the initial purpose is difficult to achieve, this
requirement can be satisfied by a dedicated phase of the methodology (see
the final version of D3.1 for a complete description of the iTelos methodology).
The key idea is to transform the purpose, initially stated by the users as a
natural language sentence, into a set of formal requirements and information
models, to be adopted in the next iTelos phases for the generation of the final
KG. Such an objective is achieved by the iTelos methodology by producing a
set of Competency Questions (CQs), and an ER model representing the
information to be considered in the final KG.

● Data Collection: in the second phase of the methodology (always
considering the iTelos methodology as it is described by the final version of
the deliverable D3.1), the main requirement to be satisfied is to collect a set of
resources to be then exploited in the next phases in order to generate the final
KG. Nevertheless, two different sub-requirements are included in the main
one. (i) The first one is related to the type of resources collected. In fact, both
data and knowledge resources need to be collected in this phase. In other
words, in the set of collected resources are included both datasets and
datasets schemas (ontologies). (ii) The second sub-requirement to be

Copyright © JIDEP Project Consortium 2022

5



JIDEP - 101058732

considered is the identification of the sources (websites, web services,
databases and many others) from which the resources have to be collected.
This activity is not trivial due to the heterogeneity present in the set of
available information sources. Such heterogeneity is compounded by the
different ways adopted by the source to represent and describe the resources
they distribute. The resources can be described by the sources using different
information (metadata), thus can be difficult to recognise if a resource is
suitable for the purpose to be achieved. Moreover, the resources can
represent the information distributed by adopting different formats (CSV, TSV,
Excel, PDF, and many others) thus introducing more effort in converting the
data to be collected in the same format, suitable to be processed along the
next phases of the iTelos methodology.

● Domain Languages Alignment: during the third phase of the methodology,
the languages (natural languages and domain languages) adopted to
represent the information in the final KG, play a crucial role. The key idea is to
adopt standard and “well-known” domain languages, where the concepts
expressed are precisely defined in the domain of interest, to increase the
interoperability of the final KG. To this end, it is crucial to know if the concepts
(represented by domain language terms) to be adopted in the KG, are already
defined in reference domain-specific vocabularies (or ontologies) or not. In
case such concepts are already expressed by existing standard vocabularies,
they will be “annotated” as existing concepts referring to the relative standard
meaning. If instead, the interested concepts are not available in any of the
standard vocabularies considered, they will be “annotated” as new concepts.
The KG produced by using such annotated concepts will be more
interoperable and reusable, due to the adoption (whenever possible) of
standard concepts related to the specific purpose. To satisfy such a
requirement it is necessary to collect and disambiguate all the concepts used
to build the KG project, providing for each concept a description, an identifier
as well as the corresponding reference knowledge source (vocabulary or
ontology), if it exists.

● Schema Alignment: in the fourth phase of the iTeos methodology the main
requirement considered is again referred to the interoperability and reusability
of the final KG. Nevertheless, this case is focused on the final KG schema,
instead of the language adopted to represent the information included. The
key idea is to build the purpose-specific ontology (see D2.3 for more detail
about the ontology generated) of the final KG, by reusing as much as possible
(portions of) standard domain-specific reference ontologies. To satisfy such a
requirement, it is necessary to use a tool that is able to support the analysis of
existing ontologies to understand if the conceptualisations they provide, for
the relative domain of interest, can be reused to build the purpose-specific
ontology that defines the structure of the final KG. Moreover, there is the need
to support the modelling of such purpose-specific ontology.

Copyright © JIDEP Project Consortium 2022

6



JIDEP - 101058732

● Data Mapping: in the last iTelos phase the main requirement is to map the
datasets collected with the purpose-specific ontology defining the structure of
the final KG. To this end, another sub-requirement needs to be considered.
The datasets collected have to be properly updated in order to align the data
types with those specified in the purpose-specific ontology. Considering the
two requirements described above, the last phase of the methodology needs
to be supported by a tool able to perform the data types modification over the
datasets, as well as to merge such datasets with the purpose-specific
ontology, thus building, as final output, the KG.

The last crucial aspect to be considered, defining the requirements for the framework
supporting the iTelos methodology, is the need to compose the above-described
requirements into a single process, in such a way that the satisfaction of one of them
depends on the satisfaction of the requirements that come before. This is a crucial
aspect considering that the execution of the iTelos process can proceed backwards
in case of dissatisfaction with the evaluation activities, which decide if the
intermediate output of each phase is good enough to be used in input for the
subsequent phase. A set of tools suitable to support such a process has to be able
to work connected into a framework where the output of a specific tool has to be
properly executed, with a limited effort, as the input of the subsequent one.

3. The iTelos Framework
In this section, the iTelos framework is detailed, by describing the specific tools
applied in each phase of the methodology. More in detail the description of the tools
is based on the requirements to be satisfied at each phase (see Section 2.1). Due to
that, in some iTelos phases, the usage of more than one tool is required to satisfy the
relative requirement set.

The goal of the iTelos framework is to compose together the execution of different
tools, performing different activities, but having the same common objective, to build
a purpose-specific KG. The tools adopted to implement the iTelos methodology have
been chosen, and need to be used, to produce the relative intermediate output for
each phase in which they have to be adopted, respectively. The key idea is that the
output of each tool has to be the input of the tool to be executed subsequently. This
kind of connection between the different tools reduces the effort of the overall
process of KG generation, by reducing the management of the resources handled at
each phase, to be provided as input to the next phases. Here below, each iTelos tool
is described, by providing, for each of them, the tool’s objective, its expected input
and output, as well as the details about its composition and usage instructions.

Moreover, in the last sub-section, it is reported the description of the KG-builder tool.
Such a tool is an updated version of the data mapping tool adopted in the last iTelos
phase. The KG-builder tool aims at generating KGs through a semi-automatic
process.

3.1 Purpose Formalisation Tools
In the initial phase of iTelos, as detailed in section 2.1, the main requirement to be
satisfied is to formalise the initial user purpose. The input of this phase is the
Copyright © JIDEP Project Consortium 2022

7



JIDEP - 101058732

purpose as provided by the user, thus usually represented as a natural language
statement. The first tool adopted to formalise such an input is a document writer tool
used to create the Purpose Formalisation document where the four main elements
implicitly included in the input purpose, need to be reported:

1. The Purpose Domain: the description of the domain of interest. More in detail,
the description of the domain defines in general the environment in which the
user purpose is defined, thus providing important details about the information
to be included (or not) in the final KG.

2. A Set of Scenarios: in the same document, a set of different scenarios is
defined within the boundaries of the previously defined purpose domain. The
scenarios define different details about the possible background environments
implicitly included in the purpose domain (and thus in the initial purpose).
More scenarios are defined in the Purpose Formalisation document, the more
detailed will be the information to be included in the final KG.

3. A List of Personas: the description of different personas acting within the
different scenarios. The personas defined are the actors considered by the
initial purpose. They can be users of the final KG and/or people associated
with the information that the final KG needs to contain. The More
heterogeneous the description of the personas considered by the purpose will
be, the more information will be available to understand how to properly
model the final KG.

4. A List of Competency Questions (CQs): having the purpose domain, the
scenarios and the personas, the last element to be added in the Purpose
Formalisation document, is a list of Competency Questions. It is a list of
statements (in question form) describing how one or more personas interact
within a scenario (with other personas or with the environment). A CQ
represents a single specific use case, to be satisfied by the final KG, included
in the initial purpose. For this reason, at the end of the methodology, the CQs
will be transformed into queries, to evaluate the final KG.

In the Purpose Formalisation document, the key idea is to extract all the possible
details from the informal definition of the initial purpose. To this end, the four main
elements, described in the document, aim at specifying as much as possible such
information, by defining in the end a list of functional requirements to be satisfied, in
the form of CQs. Any text editor can be used to achieve such intermediate output,
nevertheless, the four main elements have to be present in the final version of the
document. For this reason, a document template can be adopted to support the
definition of the required steps.

In the Purpose Formalisation phase (see final version of D3.1 as methodology
reference) the second tool adopted is a spreadsheet editor. The objective to be
achieved by using such a tool is the extraction of all the “concepts” to be used for
modelling the purpose-specific KG’s structure. More concretely the concepts are
terms (words, or labels) extracted by the CQs defined previously in the Purpose
Formalisation document. Such terms identify the information elements to be included
Copyright © JIDEP Project Consortium 2022

8



JIDEP - 101058732

in the final KG. The spreadsheet produced, named Purpose Formalisation sheet,
reports the IDs of the scenarios and persons, as well as of the CQ from which each
concept has been extracted.

At the end of the purpose formalisation process, the last tool adopted aims at
modelling the initial draft of the final KG’s schema, shaped as the Entity Relation
(ER) model. To this end, the tool adopted is yEd [1], a diagram editor offering all the
building blocks and symbols to design ER models. To obtain the desired ER model,
the Entities, with their properties, and the Relations between the Entities considered,
are named in the model, by using the concepts extracted previously and collected in
the Purpose Formalisation sheet. A portion of the ER model produced at the end of
the first phase of the methodology is depicted in Figure 1.

Copyright © JIDEP Project Consortium 2022

9



JIDEP - 101058732

Fig. 1 - Automotive ER model

3.2 Data collection tools
In the second iTelos phase, the objective is to collect the resources required for the
creation of the final KG. The data collection activity is often composed of different
tasks, depending on the type(s) of data and data sources considered. The
heterogeneity at the data source level brings the need to consider different solutions

Copyright © JIDEP Project Consortium 2022

10



JIDEP - 101058732

to concretely extract the required data, from the sources identified. Before the
extraction, the need is to identify the sources of data and knowledge, from which the
required information can be extracted. Sometimes such sources are provided in
input to the iTelos methodology. This is the JIDEP case, where the data to be
transformed into reusable KGs, are directly provided by the industrial partners.
Nevertheless, that is not always the case. Sometimes the sources have to be found
by searching on the web. To support such research of information sources, the iTelos
users can exploit the ER model produced in the previous phase, which highlights
which are the entities that should be collected to be part of the final KG.

The sources available can be very heterogeneous. Some of them distribute quality
data that are described by well-designed metadata, thus improving the findability of
such resources. The effort required to extract data from these kinds of sources is
usually reduced. Nevertheless, there are data sources, containing useful data,
distributed with a low quality (noisy data) and described by using poor metadata. For
these second types of sources, the effort to be paid for the data collection is higher.
In fact, the collection of data, in this case, includes also the cleaning, filtering and
formatting of the data collected. Due to the need to handle the data and its relative
source, the tool supporting the data collection offered by iTelos can be divided into
two categories:

● Source Identification and Data Collection. iTelos offers a data distribution
system based on different data catalogues. Such catalogues are web portals
where the resources produced by an iTelos execution (KGs, but also
ontologies and vocabularies data), are distributed (with the consent of the
owner), thus being available for further reuse. Each catalogue distributes data
for a specific domain of interest, and all the catalogues are linked and
accessible by a main data catalogue. This approach reduces the effort in the
source identification activity. Moreover, the catalogues provide different
approaches for the data collection (download), depending on the level of
privacy and accessibility defined for each dataset published on the
catalogues. More information regarding the data catalogues and data search
services can be found in the dedicated JIDEP deliverable D3.3.

● Data Filtering, Cleaning and Formatting. When building a KG, the data
collected comes from different sources. Even considering the above data
sources, supporting the iTelos methodology and thus distributing quality data,
only a portion of the resources required for the final KG are collected from
those sources. Another portion of data (that is not fixed, it depends on the
purpose to be satisfied) is collected from low-quality sources, thus providing
data that needs to be filtered, cleaned and formatted to obtain the information
to be included in the final KG. To this end, iTelos provides a set of well-known
data management libraries. The key idea is to facilitate the filtering, cleaning
and formatting of sub-activities. Nevertheless, such activities always require
experience in programming languages (Python) and data management, for
this reason, if the iTelos user doesn’t have such skills, the user needs to be

Copyright © JIDEP Project Consortium 2022

11



JIDEP - 101058732

supported by a data scientist. Here below is a list of the most common Python
based libraries adopted by iTelos to filter, clean and format the data collected.

○ Dataframe management: Pandas
○ Array and matrix data management: NumPy
○ Plotting: Matplotlib, graphviz
○ REST API: Requests
○ Data scraping: Scrapy, BeautifulSoup4
○ Dates values management: Dateparser, Arrow
○ Geospatial data management: GeoPandas, geopy, geoplot (Cartopy)

The above libraries can be used in different ways, due to the fact that they
offer a quite large range of options to handle the data collected. Nevertheless,
the iTelos methodology defines clearly which should be the criteria to be
considered during the filtering, cleaning and formatting activities. More in
detail, the key idea is to handle the data collected by:

○ filtering out the portions of information that do not give any support for
the satisfaction of the main purpose;

○ cleaning the remaining data, by avoiding noisy values, like missing
values, typos, and duplicated values;

○ formatting the above cleaned data, by unifying the data types and
representation formats (i.e., using the same format to represent date
values).

The above activities are executed to both the data and knowledge resources.
The resources obtained after the above activities need to be properly defined
to be used as input for the next iTelos phases. For this reason, the
methodology defines clearly the formats in which such resources have to be
produced, which are the JSON and RDF-OWL formats, for data and
knowledge resources, respectively.

3.3 Domain Languages Alignment Tool
The main requirement for the third phase of the iTelos methodology, As already
mentioned in section 2.1, is to collect and disambiguate the concepts used to
express the information into the KG produced at the end of the methodology
execution. By considering the methodology contexts, a concept can be defined as
the base element of a vocabulary (or a terminology) for a specific domain of interest.
In other words a concept is a term (or a word) used to describe a specific part of the
information into the relative domain of interest (i.e., automotive sector, wind turbine
sector, PCB sector). Nevertheless, a concept can assume different meanings (or
senses) depending on how, and who, is using it. For example, the concept
expressed by the word "wheel" can be used to express information about both a car
wheel and a truck wheel, even though the characteristics of the wheels for the two
objects are different. For this reason, it is important to define each concept precisely,
with the aim of disambiguating the meaning of each term. Any type of data that is
built using such disambiguated concepts to express its information becomes more
Copyright © JIDEP Project Consortium 2022

12



JIDEP - 101058732

understandable to the users who need to exploit it, thus making the data even more
interoperable and reusable.

The KG construction process defined by iTelos identifies the concepts to be
disambiguated into the datasets as well as in the reference ontologies, collected in
the second phase (see the section 3.2). More in detail, such concepts are used to
define the following elements.

● The ETypes, or ontology classes, used to define the type of real world entities
to be represented into the KG produced. Each EType is named with one, and
only one, concept.

● The EType’s properties are named by using specific concepts.
● The value used to identify each real world entity can be a concept that needs

to be disambiguated.
● The values of the entity's attributes can be represented by specific attributes

that need to be disambiguated to better understand their meaning.

Fig. 2 - JIDEP Language Resource

To this end, the iTelos methodology requires the creation of a language resource
associated with the KG, which is created at the end of the whole process. Such a
language resource is in the form of a CSV file, which can be created using any
spreadsheet tool. Figure 2 shows part of the CSV file defining the language resource

Copyright © JIDEP Project Consortium 2022

13



JIDEP - 101058732

created for the JIDEP project. Each row of the spreadsheet above defines a concept
that will be used to build the JIDEP KGs. The language resource columns instead
define the main information to be associated with each concept. Specifically, the
column set requires the definition of the following information for each concept.

● Concept ID: the concept local identifier. This identifier uniquely identifies the
respective concept and its meaning every time the concept needs to be used
in other data structures (such as datasets or ontologies). The concept ID is
not affected by polysemy (different meanings for the same natural language
word), which is instead present when the concept is represented by its own
natural language term (word).

● Word: one of the natural (or domain) language terms that can be used to
represent the relative concept.

● Knowledge Source: the knowledge source from which the concept was
collected, if it was reused from other reference ontologies, or created, if the
concept is part of a vocabulary or ontology created specifically for the current
KG construction process. The knowledge source value for each concept is the
URL of the ontology (or vocabulary) from which the concept was collected.
Most of the concepts disambiguated in the JIDEP language resource, partially
shown in Figure 2, were created for the JIDEP project and therefore have the
JIDEP ontology URL [6] as their knowledge source value. However, some of
the JIDEP concepts have been reused from existing standard ontologies in
order to improve the interoperability of the final KG. For example, the
concepts in rows 4, 6 and 7 in Figure 2 were collected from the EMMO
ontology [7], the FOAF ontology [8] and the DBpedia ontology [9],
respectively.

● Knowledge Type: the type of use for the relative concept. The knowledge type
value specifies how the concept is used during the process of building the KG
and in the final KG. Such a value defines whether a concept defines an EType
(“Class” value in the spreadsheet), an EType data property (“Data Property”
value in the spreadsheet), an EType object property (“Object Property” value
in the spreadsheet), an entity name (“Entity” value in the spreadsheet) or an
entity attribute name (“Attribute” value in the spreadsheet).

● Description: the description of the meaning of the concept used for the current
purpose. The description value is fundamental for the disambiguation of the
relative concept. Thanks to such a description, it is possible to immediately
understand the information that can be expressed by using the relative
concept in other data structures (such as ontologies and datasets). The
description value is extracted directly from the knowledge source indicated in
the third column (see Figure 2).

In total, for the JIDEP project, 114 concepts have been collected and disambiguated,
thus defining the JIDEP vocabulary, or the JIDEP language resource.

Copyright © JIDEP Project Consortium 2022

14



JIDEP - 101058732

3.4 Schema Alignment Tool
In the fourth iTelos phase, the objective is to generate the schema of the final KG. As
already anticipated in section 2.1, such a schema is concretely implemented by an
ontology built by reusing as much as possible portions of already existing,
well-known reference standard ontologies. In other words, such a requirement needs
to be supported by a tool that is able to compose ontologies, as well as to model
thus purpose-specific ontological aspects that cannot be reused from existing
ontologies. To this end, iTelos provides the usage of the Protègè [2] tool. This tool
allows the user to define classes of entities, called Entity Types (or ETypes), by
naming them with specific labels and defining the relative properties. The ETypes
properties in Protègè are divided into data and object properties. While the former
specifies the attributes of a single EType (like name, gender, and date of birth of the
Person EType), the latter specifies the relations among different ETypes (for
example, the object property “live_in” defines the relation between the EType Person
and EType House).

The Protègè tool, in the fourth iTelos phase, takes in input the knowledge resources
(reference standard ontologies) collected in the previous phases and the
purpose-specific ER model. The objective to achieve by using the tool is to generate
a unique ontology, following the ER model, which specifies how the information has
to be structured to support the main purpose, and by reusing as much as possible
the ETypes and properties of the input reference standard ontologies. The modelling
of the final KS’s ontology is implemented by following the knowledge modelling
approach defined in D2.3. For this reason, the modelling activity requires a certain
level of experience in knowledge management, and, if the iTelos user doesn’t have
such kinds of skills, she should be supported by a knowledge engineer. The final
output to be produced by the Protègè tool is an RDF-OWL file defining the KG’s
unique ontology. It is important to notice how the input knowledge resources, that
have been properly formatted in RDF-OWL, reduced the effort in modelling the KG’s
unique ontology using Protègè, making it possible to copy and paste the ETypes and
properties directly using the tool. Figure 3 depicts a usage example of the Protègè
tool.

Copyright © JIDEP Project Consortium 2022

15



JIDEP - 101058732

Fig. 3 - Protègè tool over the Material Passport ontology

3.5 Data Mapping Tool
In the last iTelos phase, the objective is the creation of the final KG. To this end, the
datasets collected, filtered, cleaned and formalised have to be associated with the
unique ontology defined in the previous phase. This activity is called data mapping,
namely the mapping of each value in the different datasets, with the ETypes and
properties of the unique ontology. The key idea is to represent the information
included within all the datasets using a single representation provided by the KG’s
ontology. To this end, iTelos provides a data mapping tool called Karmalinker, based
on the already existing Karma [3] data mapping tool.

The tool takes in input the unique ontology and the set of datasets to be integrated
into the final KG. The user will execute the data mapping dataset by dataset, by
producing in output a set of RDF files which can be composed together (concretely
by unifying the contents) as different parts of the same KG. It is important to notice
that the output produced by the Karmalinker tool is a KG where the knowledge and
data layer, represented by the datasets and ontologies handled along the iTelos
phases, are merged into a single object (RDF file). The Karmlinker tool allows its
users to perform two different kinds of operation, described below.

● Data Mapping Operations: through this kind of operation, Karmalinker allows
the users to declare the association between each dataset field (for example,

Copyright © JIDEP Project Consortium 2022

16



JIDEP - 101058732

table’s columns and/or JSON fields) and the EType’s properties defined to
represent such information. In other words, the mapping operations merge the
datasets with the ontology, by representing the entities implicitly defined into
the datasets through the ETypes, and their properties, explicitly defined into
the unique ontology. Karmalinker allows to perform such operations through a
dedicated user interface, where the user can select the right EType and
EType’s properties for each dataset field. Figure 4 shows an example of the
mapping operation between a small automotive test dataset and the
automotive ontology defined for the JIDEP use case.

Fig. 4 - Karmalinker data mapping operations.

● Data Management Operations: Karmalinker offers another kind of
functionalities which allows the user to perform basic data manipulation
activities. As depicted in Figure 5, Karmalinker provides the possibility to write
Python code to modify the dataset fields. In the example reported in Figure 5,
the user exploits the ISODate Python library to format the String date into the
standardised ISO format. Different Python libraries can be exploited in
Karamlinker to perform data management operations that have not been done
in the previous phases. It is important to notice the choice to keep Python as
the main programming language for data management across the different
methodology phases. This important aspect allows the users to rely on a
single library set for this kind of operation, thus limiting the skills required to
handle the data, and remaining compatible with the data handled in the
previous phases.

Copyright © JIDEP Project Consortium 2022

17



JIDEP - 101058732

Fig. 5 - Karmalinker data management operations.

As already mentioned, the Karmalinker output is a single RDF-turtle (ttl) where the
values in the dataset have been transformed by the data management operations,
and associated with the proper EType’s properties by the data mapping operations.
Karmalinker produces one RDF-turtle file for each dataset handled. The contents of
each ttl file can be copied and pasted into a single ttl file, thus composing the final
KG. The final KG can be visualised by any tool of Graph and Knowledge
visualisation. For example, in Figure 6 an example of KG produced by Karmalinker is
visualised in GraphDB [4].

Copyright © JIDEP Project Consortium 2022

18



JIDEP - 101058732

Fig. 6 - Karmalinker KG example.

As described above, Karmalinker offers different functionalities, and some of them
can be properly exploited only if a certain level of expertise in data management
(and/or Python programming). For this reason, it is strongly suggested the support of
a data scientist, during the usage of the tool in the last phase of the methodology.

3.5.1 Karmalinker Semi-automatic Mode
Karmalinker includes another functionality that provides strong support when a huge
amount of data having the same structure, or schema, (i.e., datasets having the
same fields (dataset schema) but different values) needs to be processed. Such a
functionality allows recording into a mapping model file (RDF-turtle) all the mapping
operations and data management operations (see Figure 7), performed over one
dataset and considering one reference ontology. The mapping model file, which can
be produced through the Karmalinker GUI, can be reapplied, considering the same
reference ontology, over a different dataset, if and only if the new dataset has the
same schema. If that is the case, Karmalinker is able to perform again each
operation performed over the previous datasets, automatically, thus significantly

Copyright © JIDEP Project Consortium 2022

19



JIDEP - 101058732

reducing the time required to process the new dataset. Such functionality can be
defined as semi-automatic due to the fact that a first execution of Karmalinker is
always required to perform and record all the operations required. Nevertheless,
after that, all the other executions, over new datasets (having a fixed schema) can
be processed automatically by running Karmalinker in the background (for example
through the command line).

Fig. 7 - Karmalinker, operations recording.

3.5.2 Download and Set-up Instructions
Karmalinker is distributed, under request, by the Knowdive research group,
University of Trento (Italy). To achieve the JIDEP project objective, the tool is
provided within a dedicated docker image, together with the docker-compose file
containing the docker objects definition required to execute the tool itself. For this
reason, to be able to use the Karmalinker tool, docker (minimum version 2.2), and
docker-compose, have to be installed in the deployment machine. To use the
Karmalinker tool, it is necessary to store, in a dedicated deployment machine, the
relative docker image and docker-compose file, and then run the following
command:

#docker compose up

If no issues are raised during the installation, the user can access the Karmaliner
GUI through a web browser at the following address:

http://localhost:7000/

Copyright © JIDEP Project Consortium 2022

20



JIDEP - 101058732

For the execution of Karmalinker in semi-automatic mode, the user can use the
command line (i.e., unix bash shell) by writing the command following the
instructions provided on the documentation page [5].

3.6 KG-builder tool
The tool described in this section is a background service for the creation of KGs, to
be integrated into the JIDEP DLT platform, in order to transform into KGs the data
handled by the platform, by following the iTelos methodology. The tool, called
KG-builder, is a software component that includes the execution of Karmalinker in
semi-automatic mode, to transform JSON datasets into reusable KGs. The KGs
produced by the DLT platform, thanks to the KG-builder tool, will be then published in
a dedicated JIDEP data catalogue (see D3.3), where the data can be searched and
eventually downloaded for further reuse. Below, in the section, more details are
provided about the functionalities of the tool as a standalone service, as well as the
integration of the KG-builder tool with the DLT platform.

Fig. 8 - KG-builder tool architecture

Figure 8 depicts the architecture of the KG-builder tool, and how it interacts with the
DLT platform. The tool takes in input the JSON datasets provided by the DLT
platform and aims at providing output a KG-based version of such datasets. The
execution of the KG-builder tool is fully automatic once it is deployed within the DLT
platform. Nevertheless, as already anticipated, the tool is based on the
semi-automatic execution of Karmalinker. Due to that, in order to build the KGs
starting from the input datasets, the tool needs the predefined files defining:

● a reference ontology, used to uniquely represent the data of each KG
produced. And,

● a mapping model, for each dataset schema, containing the Karmalinker
operations to be performed once a dataset having a specific schema has to
be transformed into KG.

Copyright © JIDEP Project Consortium 2022

21



JIDEP - 101058732

This means that the KG-builder tool can be exploited after at least one execution of
the process that generates a KG (or a portion of it) following the iTelos methodology.
Such an iTelos process generates the unique reference ontology and the mapping
models that will be used subsequently by the KG-builder tool to transform new
datasets (with a recognized schema) in KGs. Notice that, as a consequence, each
dataset having a different schema needs its own mapping model, defining the
Karmalinker operations to build the KG, specific for that dataset schema. The
KG-builder applies the model to the right dataset by matching the name of the two
files.

The KG-builder tool is internally composed by a main process (Process Manager in
Fig. 7) that handles the collection of the inputs, the matching between datasets and
mapping models, as well as the delivery of the final output. Such a process is
responsible for the background execution of an instance of the Karmalinker tool that,
executed in semi-automatic mode, builds the KGs. The remaining components of the
KG-builder tool, are storages, concretely implemented as docker volumes, where
the reference ontologies (Schema Storage), the mapping models (Models Storage),
the input datasets (Datasets Storage) and the output KGs (KGs Storage) are
respectively maintained and handled by the main Process Manager.

3.6.1 Requirements and set up
KG-builder is distributed, under request, by the Knowdive research group, University
of Trento (Italy). To achieve the JIDEP project objective, the tool is provided within a
dedicated docker image, together with the docker-compose file containing the docker
containers and services definition required to execute the tool itself. For this reason,
to be able to use the KG-builder tool, docker (minimum version 2.2), and
docker-compose, have to be installed in the deployment machine. To use the
KG-builder tool, it is necessary to store, in a dedicated deployment machine, the
relative docker image and docker-compose file, and then to run the following
command:

#docker compose up

3.6.2 Usage
The KG-builder is used through its RESTful API layer which consists of two
endpoints to be invoked with their respective parameters. The first API endpoint is a
POST request, as shown below, which is used to send the dataset to be transformed
into a KG.

POST:http://<serverIP>:3001/dataset

The <serverIP> indicates the IP address of the machine where the tool has been
deployed. The body of the first POST request is a JSON format content having two
main key-value objects, as shown by the following JSON dataset structure example.

Copyright © JIDEP Project Consortium 2022

22



JIDEP - 101058732

{

"id": <dataset-ID>,

"passport": <JSON-dataset-content>

{

In the JSON dataset structure example above, the <JSON-dataset-content> is
the content of the dataset that needs to be transformed into a KG. The KG-builder
tool will name such a new KG by using the unique identifier provided by the
<dataset-ID> value. The expected output for the first API request is an
acknowledgement message indicating that the tool has successfully received the
JSON dataset to be transformed into an interoperable KG.

The second API endpoint is a GET request, shaped as follows, that is used to
transform and retrieve the KG version of the dataset sent through the previous
request.

GET:http://<serverIP>:3001/build?id=<dataset-ID>&domain=<dataset-domain>

As for the previous request, the <serverIP> indicates the IP address of the machine
on which the tool is running. The <dataset-ID> in the above request, is exactly the
value of the identifier specified in the body of the first request, identifying the dataset
to be transformed, that was previously sent to the tool. In addition, the
<dataset-domain> parameter can take one of the following three values:
automotive, pcb or wind. This last parameter defines which of the previously defined
data mapping models (see previous section) must be applied to transform the
respective dataset into a KG. The expected output for the second API request is the
KG version of the previously sent dataset, shaped as an RDF-turtle file, provided
directly in the response body.

3.6.3 Deployment and DLT platform integration
This section describes the KG-builder tool deployment as well as its integration into
the DLT platform-based service (from now on called “the platform”) for the JIDEP
project use cases (see deliverable D3.4 - DLT platform components).

Deployment

More in detail, the deployment environment chosen for the KG-builder tool is a
Kubernetes [10] cluster hosted by the DigitalOcean service [11]. The KG-builder
deployment process includes the configuration of the Kubernetes cluster through the
definition of a manifest file. The YAML manifest file, for the KG-builder tool, defines
the state of the tool as it has to be deployed into the Kubernetes cluster. In other
words, the tool environment variables, the tool API endpoints, as well as its
interaction with other platform services managing the tool’s lifecycle and execution.
To better understand the deployment process described in this section, the
deliverable reports here below are some technical definitions used to specify the

Copyright © JIDEP Project Consortium 2022

23



JIDEP - 101058732

deployment of the KG-builder tool as it is reported into the manifest YAMAL file (see
figure 11).

● Deployment: A Kubernetes definition that specifies the desired state for
application instances. The Deployment represents the top level state definition
into the manifest file used to deploy the KG-builder tool.

● Service: A Kubernetes definition that exposes an application running as a
network service within a cluster. The Service defines how the KG-builder can
be used through its API layer.

● ConfigMap: A Kubernetes definition used to store configuration information
represented as key-value pairs. A ConfigMap is used to define in the manifest
the values of the KG-builder tool parameters. Figure 9 reports an extraction of
the manifest information defining a ConfigMap for the KG-builder tool
deployment.

● Secret: A Kubernetes definition used to store sensible data, such as
passwords and API keys, securely. A Secret is defined as part of the manifest
to store securely the KG-builder tool information that must not be accessible.
Figure 10 reports an extraction of the manifest information defining a Secret
for the KG-builder tool deployment.

● PersistentVolume (PV): A Kubernetes definition that specifies a request for
storage, within the related cluster, used to persist data during, and beyond the
KG-builder tool execution.

Fig. 9 - KG-builder Deployment ConfigMap

Copyright © JIDEP Project Consortium 2022

24



JIDEP - 101058732

Fig. 10 - KG-builder Deployment Secret

The complete information set for the KG-builder tool is defined in the YAML manifest
file as it is reported in Figure 11. Once all the deployment state information is
properly added into that file, the deployment process can be finalised by executing
the following command, in the machine where the Kubernetes cluster is running, to
save the manifest file as “kg-builder-deployment.yaml” and apply the deployment:

#kubectl apply -f kg-builder-deployment.yaml

After applying the deployment manifest, it is possible to verify that the deployment is
running correctly by checking the deployment status with the following command and
checking their output respectively:
#kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
catalog-api 1/1 1 1 206d
distributed-storage 1/1 1 1 198d
material-passport 1/1 1 1 206d
mci-api 1/1 1 1 206d
ontology-api 1/1 1 1 206d
platform 1/1 1 1 205d
poe-api 1/1 1 1 205d
storage-api 1/1 1 1 205d
storage-redis 1/1 1 1 214d
kg-builder 1/1 1 1 10d

The availability of the KG-builder tool (shown with the value 1 in the last line of the
above command output) indicates the correct execution of the deployment process.

1. apiVersion: apps/v1
2. kind: Deployment
3. metadata:
4. name: kg-builder
5. labels:
6. app: kg-builder
7. spec:
8. selector:
9. matchLabels:
10. app: kg-builder
11. template:

Copyright © JIDEP Project Consortium 2022

25



JIDEP - 101058732

12. metadata:
13. labels:
14. app: kg-builder
15. spec:
16. containers:
17. - name: kg-builder
18. image: ghcr.io/tvsltd/jidep-kg:master
19. env:
20. - name: DATABASE_URL
21. valueFrom:
22. configMapKeyRef:
23. key: DATABASE_URL
24. name: kg-builder-config
25. - name: NODE_ENV
26. valueFrom:
27. configMapKeyRef:
28. key: NODE_ENV
29. name: kg-builder-config
30. - name: AWS_DEFAULT_REGION
31. valueFrom:
32. configMapKeyRef:
33. key: AWS_DEFAULT_REGION
34. name: kg-builder-config
35. - name: LOG_LEVEL
36. valueFrom:
37. configMapKeyRef:
38. key: LOG_LEVEL
39. name: kg-builder-config
40. - name: S3_BUCKET_NAME
41. valueFrom:
42. configMapKeyRef:
43. key: S3_BUCKET_NAME
44. name: kg-builder-config
45.
50. - name: AWS_ACCESS_KEY_ID
51. valueFrom:
52. secretKeyRef:
53. key: AWS_ACCESS_KEY_ID
54. name: kg-builder-secret
55. - name: AWS_SECRET_ACCESS_KEY
56. valueFrom:
57. secretKeyRef:
58. key: AWS_SECRET_ACCESS_KEY
59. name: kg-builder-secret
60. resources:
61. limits:
62. memory: "256Mi"
63. cpu: "1000m"
64. ports:
65. - containerPort: 3001
66. imagePullSecrets:
67. - name: ghcr-secret

Fig. 11 - KG-builder Manifest file

Integration to JIDEP Platform:

The KG-builder tool integrates with the JIDEP platform through a well-defined API
layer, facilitating seamless communication and data exchange between the tool and
the platform's core services. Each API endpoint is designed to handle specific
requests and responses, ensuring that data flows efficiently and securely. The
interaction process is as follows:
Copyright © JIDEP Project Consortium 2022

26



JIDEP - 101058732

1. API Requests: The JIDEP platform sends API requests to the KG-builder tool
to send and transform data (see KG-builder tool usage sub section above).

2. Data Processing: The KG Builder tool handles the incoming requests
internally according to its business logic.The KG Builder tool handles the
incoming requests internally according to its business logic.

3. API Responses: The results are returned from the tool to the platform via API
responses, providing the necessary data or confirmation of actions taken.

4 Conclusions
This deliverable describes how the Knowledge Graph (KG) generation process,
defined by the iTelos methodology, is supported by a dedicated framework,
composed of different tools. The different tools aim at producing the different
intermediate outputs, along the iTelos phases. The key idea, introduced by the iTelos
methodology, is to compose the different tools, by considering as input of each tool,
the output of the tool executed previously, following the methodology. Such an
approach, in the iTelos implementation, aims at reducing the effort in the execution of
the different activities required to build a KG. Moreover, the objective is to provide a
complete set of tools for KG generation, starting from the formalisation of the
requirements, until the generation of a unique object (file or set of files) representing
the final KG. The current deliverable reports the description of each tool adopted
along the iTelos methodology, as well as how to use them to achieve the desired
results.

5 Updates since the last version
This is the second and last version of the current deliverable. The changes that have
been applied respect to the previous version are list here below:

● The section 3.3 describing the tool to implement the language alignment
activity required by the third phase of the iTelos methodology, has been
detailed. In such a section has been reported how to meet the requirements
defined by the iTelos methodology, regarding the disambiguation of the
terminology used by the KG created.

● The section 3.6 describing the KG-builder tool has been updated by providing
more detail about the download, set-up, usage and deployment of the last
version of the KG-builder tool.

Copyright © JIDEP Project Consortium 2022

27



JIDEP - 101058732

References
● [1] https://www.yworks.com/products/yed
● [2] https://protege.stanford.edu/
● [3] https://usc-isi-i2.github.io/karma/
● [4] https://www.ontotext.com/products/graphdb/
● [5] https://github.com/usc-isi-i2/Web-Karma/wiki
● [6] http://www.theworldavatar.com/kg/ontomatpassport
● [7] http://emmo.info/emmo
● [8] http://xmlns.com/foaf/0.1
● [9] https://dbpedia.org/ontology
● [10] https://kubernetes.io/
● [11] https://www.digitalocean.com/

Acronyms and Abbreviations
ADL ALMAS Partecipazioni Industriali S.P.A.
ADS Adscensus, MB
AVO Arteevo Technologies Ltd
BUL Brunel University London
CRF Centro Ricerche Fiat Scpa
FHV Fachhochschule Vorarlberg GMBH
PVI Precision Varionic International Limited
TPI TPI Composites
TVS Technovative Solutions Ltd
UCAM The Chancellor Masters And Scholars Of University Of Cambridge
UNITN University Degli Studi Di Trento
UPCE Univerzita of Pardubice
ZOREN Zorlu Enerji Elektrik Uretim As

Copyright © JIDEP Project Consortium 2022

28

CFRP Carbon Fibre Reinforced Plastic
CO2 Carbon Dioxide
DLT Distributed Ledger Technology
EC The European Commission
ELV End-of-Life-Vehicle
EOL End-of-Life
GW Giga-Watt
IC Integrated Circuit
Mt Mega-tons
NMF Non-Metallic Fraction
PCB Printed Circuit Board
R&D Research & Development
RSD Requirements Specification Document
SME Small-Medium Enterprise
WEEE Waste Electrical and Electronic Equipment

https://www.yworks.com/products/yed
https://protege.stanford.edu/
https://usc-isi-i2.github.io/karma/
https://www.ontotext.com/products/graphdb/
https://github.com/usc-isi-i2/Web-Karma/wiki
http://www.theworldavatar.com/kg/ontomatpassport
https://dbpedia.org/ontology
https://kubernetes.io/

