
JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 1

PROJECT DELIVERABLE REPORT
Grant Agreement Number: 101058732

Joint Industrial Data Exchange Pipeline

Type: Report

Deliverable Title: D4.2 Integration Report (Beta)

Issuing partner Technovative Solutions Ltd(TVS)
Participating partners UCAM, UNITN
Document name and revision D4.2 Integration Report
Author(s) Rasel Ahmed(TVS)
Reviewer(s) Miah Raihan Mahmud Arman(TVS)

Tanvir Islam(TVS)
Deliverable due date 30-11-2024
Actual submission date

Project Coordinator Vorarlberg University of Applied Sciences
Tel +43 (0) 5572 792 7128
E-mail florian.maurer@fhv.at
Project website address www.jidep.eu

Dissemination Level
PU Public ✓
PP Restricted to other programme participants (including the Commission

services)

CO Confidential, only for members of the consortium (including the
Commission services)

SEN Sensitive, limited under the conditions of the Grant Agreement

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 2

Table of Contents
Table of Contents .. 2

List of Tables .. 2

List of Figures ... 2

Executive Summary .. 3

1. Introduction .. 4

2. Methodology .. 4

2.1 API-Driven Integration .. 4

2.2 Hybrid Architecture ... 4

2.3 Component-Based Design.. 5

3. Integration Architecture .. 5

4. API Design and Development .. 7

4.1 API Standards and Protocols .. 7

4.2 API Specification and Documentation ... 8

4.3 Authentication and Authorisation Mechanisms ... 8

5. Continuous Integration (CI) and Continuous Delivery (CD) .. 9

5.1 Continuous Integration (CI): .. 9

5.2 Continuous Delivery (CD): .. 10

5.2.1 Deployment Automation and Release Processes ... 10

5.2.2 Rollback and Recovery Mechanisms .. 10

5.2.3 Monitoring and Feedback Loops for Production Releases 10

5.3 Tools and Platforms.. 10

6. Security and Compliance ... 11

7. Performance Analysis .. 12

8. Challenges and Resolutions .. 12

9. Testing and Validation.. 13

10. Documentation and Training ... 13

11. Conclusions .. 13

References .. 14

Acronyms and Abbreviations .. 14

List of Tables
Table 1: OWASP Top 10 and additional compliance measures .. 11

Table 5: Challege and Resolutions.. 12

List of Figures
Figure 1: High Level architectural view of JIDEP platform's components 6

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 3

Executive Summary

This report presents the initial integration reference for the JIDEP project, the initial version of
deliverable D4.2. The primary objective is integrate services developed in Work Package-
4(WP4) that have been committed in the project and enhancing functionality and usability.
These tools have been successfully integrated into the JIDEP platform using an API-driven
approach, chosen for its scalability and ability to facilitate data exchange across services. This
integration ensures the tools are accessible and operational, supporting the project’s aim to
provide valuable, interoperable solutions for the stakeholders. An API-driven integration
approach allows each tool to communicate directly with the JIDEP platform, ensuring real-time
data synchronization and consistent functionality. This approach enhances modularity,
allowing individual components to be updated or replaced without disrupting the entire system.
It also promotes scalability, making it easier to add new tools or features as project needs
evolve.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 4

1. Introduction

In today's fast-changing industrial world, there is a growing need for digital solutions to simplify
processes, boost efficiency, and provide clear insights. This report describes these needs by
creating and integrating services tailored to the stakeholders' requirements. For these services
to give their total value, they must be integrated into a single platform which is the JIDEP
Platform, allowing stakeholders easy access and sensible use. This integration ensures the
services work smoothly, offer a consistent user experience, and enable cross-functional data
use. The current JIDEP platform includes various independent services, each serving different
purposes, such as the LCA tool and Circularity Calculator. While each tool adds value, the
need for a unified integration limits the potential of combined data insights. The modular
platform is more suitable for a scalable integration strategy supporting many services and data
sources. To achieve seamless integration, JIDEP has chosen an API-driven approach. This
method offers flexibility and enables real-time data sharing between services. It allows easy
updates, additions, or removals of services without affecting the whole system. The API-driven
approach supports scalability, adding new services and features with minimal effort. By
utilising this approach, the project aims to build a reliable platform that improves data access,
supports interoperability, and provides a solid foundation for future growth.

2. Methodology

The integration methodology for the JIDEP platform is structured to ensure secure, scalable,
and efficient communication between diverse services and data sources. This methodology
emphasises modularity, API-driven integration, and a hybrid data storage and processing
approach, ensuring each component works harmoniously to support the platform's objectives
[1].

2.1 API-Driven Integration

Ensure seamless communication and modular integration between services.
 RESTful API Design:

 Each service in the platform (e.g., Collaborative Service, LCA Service,
Circularity Calculator) is developed as an independent REST API. This modular
design enables each service to function as a standalone unit, making it easy to
add, remove, or update services without affecting others.

 Centralised API Gateway:
 All service requests are routed through a centralised API Gateway, which

manages and secures all interactions.
 The API Gateway handles request routing, load balancing, and security

(authentication and authorisation). It also ensures that requests are directed to
the correct service based on user permissions and service requirements.

 Authentication and Authorisation:
 The Authentication Service verifies user identities and permissions through the

JWT protocol. This approach ensures only authorised users can access
sensitive data and functionalities across different services.

2.2 Hybrid Architecture

Combine the strengths of both blockchain and traditional storage systems to support
transparency, security, and efficiency.
 Blockchain Integration:

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 5

o A Distributed Ledger Technology (DLT) Service is integrated to manage and
record immutable, transparent transactions on the public blockchain.
Blockchain provides a secure audit trail for data, requiring high transparency
and integrity levels

o Blockchain is used explicitly for critical transaction data to maintain
immutability, while other data is stored off-chain for performance and cost
efficiency.

 Off-Chain Storage:
Data not requiring blockchain-level immutability is stored in traditional databases and
distributed file systems. These include:

o Off-Chain Database: This is for quick and secure access to frequently used or
large data sets that do not need to be recorded on the blockchain.

o Global Distributed File System (GDFS): To handle large files and support
distributed data access across multiple locations, providing scalability and
resilience.

o Knowledge Graph: For structured data representation, enabling advanced
querying and relationship mapping between different data points.

2.3 Component-Based Design

Enable flexibility, scalability, and independent management of services.
 Microservices Architecture:

 Each functionality within the JIDEP platform (Collaborative Service, Material
Passport Service, etc.) is developed as a separate microservice with its API.
This modular design allows for each service's isolated development, testing,
and deployment, enhancing overall flexibility.

 Independent Databases and Resources:
 Based on its unique requirements, each service can access specific databases

or resources (e.g., the Knowledge Graph using the Ontology Service or the
LCA Service interacting with the ecoinvent Database). This design reduces
data duplication and optimises resource usage.

3. Integration Architecture

The JIDEP platform follows a hybrid architecture integrated through an API-driven approach.
The architecture comprises several modules and services, each fulfilling a specific role. This
structured design facilitates data sharing, integration, and secure operations across various
components.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 6

Figure 1: High Level architectural view of JIDEP platform's components

Key Components:
1. User Interaction Layer:

o Dashboard: The user interface consists of a dashboard that provides access
to several core tools, including:

 Collaborative Space: For team-based interactions and shared data
access.

 Material Passport: For create, update, view and delete material
passports.

 Circularity Calculator: A tool for assessing circularity of materials.
 Environmental Analytical Tool: Offers environment-related analysis

and insights.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 7

These tools provide stakeholders a seamless, centralised experience, aligning with the
primary services at the backend.

2. Integration and Control Layer:
o API Gateway: Serves as the central communication point, routing API requests

from the user-facing dashboard to various backend services.
o Authentication Service: Ensures secure access and identity management

across the platform, managing permissions and authentication for user and
service access.

3. Core Services Layer: Each of these services is designed as a REST API for efficient
communication and scalability. They form the primary functional units that support the
dashboard tools and interact with the underlying data sources.

o Collaborative Service: Manages collaboration features such as data sharing
and user management.

o Material Passport Service: Handles data related to materials passport and
their lifecycle information.

o LCA (Life Cycle Assessment) Service: Supports environmental impact
assessments of products and materials.

o Circularity Calculator Service: Provides calculations and assessments
related to materials circularity.

o DLT (Distributed Ledger Technology) Service: Manages distributed ledger
functionalities, ensuring transparency and immutability for specific
transactions.

o Off-Chain Storage Service: Stores large or complex data sets not stored
directly on the blockchain for efficiency.

o Domain Search Service: Enables search capabilities across various data
domains.

o SimaPro Service: Integrates with SimaPro, a tool for environmental impact
assessment, complementing the LCA Service.

4. Data and Storage Layer: The foundational storage and data management
components of the JIDEP platform include a mix of databases and file systems,
integrated to manage large data sets securely and efficiently.

o Public Blockchain: Provides an immutable ledger for recording critical,
verified transactions in JIDEP we are storing the HASH data of a passport.

o Off-Chain Database: Stores data that does not require the full transparency
and security of blockchain but still needs robust management.

o Global Distributed File System (GDFS): A distributed storage system for
handling large data files across the platform.

o Knowledge Graph: Facilitates the structured representation of relationships
between data points, enabling complex data querying and reasoning through
ontology.

o Ecoinvent Database: Houses environmental data to support sustainability and
impact assessments.

o Authentication Database: Manages authentication-related data, aiding the
Authentication Service in user management.

4. API Design and Development

4.1 API Standards and Protocols

The JIDEP platform follows a standardised RESTful API approach for all services,
ensuring consistency, modularity, and ease of integration.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 8

 RESTful Design:
 Each service uses REST principles, enabling consistent and stateless

interactions across the platform.
 APIs support CRUD operations (Create, Read, Update, Delete) where

applicable, allowing easy data manipulation within each service.
 HTTP/HTTPS Communication:

 Secure HTTPS protocols are used across the platform, protecting data in transit
from potential security threats.

 Standardised HTTP methods (GET, POST, PUT, DELETE) are consistently
implemented, making the APIs intuitive for developers.

 Data Format:
 JSON is the standard data format for requests and responses, ensuring

compatibility and readability across all services

4.2 API Specification and Documentation

To ensure easy use and maintenance, each service within the JIDEP platform is well-
documented and follows an OpenAPI/Swagger specification. This approach provides
developers with an apparent, accessible reference.

 OpenAPI/Swagger Documentation:
 OpenAPI/Swagger documents each service's API endpoints, parameters,

response formats, and status codes, serving as a comprehensive guide for
interacting with the APIs.

 Each endpoint specification includes:
 Request and response formats: Detailed schema for expected data

structures.
 Parameter details: Query parameters, path variables, and body

content.
 Example requests and responses: Sample JSON payloads for typical

requests and responses.
 Error codes and descriptions: Defined HTTP status codes and error

messages for each possible outcome, aiding in consistent error
handling across the platform.

 Interactive API Documentation:
 Swagger UI provides an interactive interface where users can test API

endpoints, view example requests and responses, and understand data flows.
This makes it easier to onboard developers and troubleshoot issues.

4.3 Authentication and Authorisation Mechanisms

The JIDEP platform implements a JWT (JSON Web Token)-based approach for
authentication and authorisation, combined with Role-Based Access Control (RBAC) for
fine-grained access control.
 JWT Tokens:

 Upon successful authentication, users receive a JWT token to validate their
identity and access rights on subsequent API requests.

 JWTs are passed in the Authorization header (Authorisation: Bearer <token>)
of each API request, ensuring that only authenticated users can access the
platform's resources.

 Role-Based Access Control (RBAC):

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 9

 Access levels are defined based on roles, such as Admin, Editor, Viewer, etc.,
with specific permissions for each role. RBAC helps restrict access to sensitive
data and functionality based on user roles.

 Each service enforces role-specific permissions at the API Gateway level,
ensuring that only users with the required privileges can perform specific
actions.

 For example:
 Admin roles have full access to all CRUD operations.
 Editor roles have access to create and update but not delete.
 Viewer roles be limited to read-only access.

 Session Management and Token Expiry:
 JWT tokens are set with expiry times to enhance security. Requiring re-

authentication after a specified period reduces the risk of unauthorised access.
 The platform also implemented refresh tokens, which would allow users to

renew their access tokens without frequent logins, enhancing user experience
without compromising security.

5. Continuous Integration (CI) and Continuous Delivery (CD)

The JIDEP platform leverages a robust CI/CD pipeline to ensure smooth, reliable, and efficient
development and deployment processes. This approach supports rapid iteration, high code
quality, and seamless deployment to production, making it essential for the platform's agile
and scalable development needs. The CI/CD pipeline, facilitated by GitHub Actions,
automates the process from code integration to deployment. It includes continuous integration
for code quality and testing and continuous delivery to deploy updates via Kubernetes [2]. This
setup ensures rapid, reliable deployments while leveraging GitHub's integration and
Kubernetes' orchestration capabilities.

5.1 Continuous Integration (CI):

GitHub Actions automates the CI pipeline, triggering builds and tests upon pull requests or
branch merges. Code changes are validated through automated tests and quality checks,
ensuring integration stability.
Build Automation:

 GitHub Actions triggers Docker builds upon each merge, creating a container for
each service.

 The pipeline validates the Docker image, ensuring it adheres to the configuration
needed for Kubernetes.

Automated Testing:
 Unit, integration, and end-to-end tests run in the GitHub Actions pipeline. This setup

allows quick feedback on code quality and functionality.
 Tests execute within Docker containers to mimic production environments, catching

container-specific issues early.
Merge Workflows:

 GitHub Actions manages branch protection rules, allowing merges only when all
checks pass.

 Pull requests automatically trigger CI workflows, ensuring that only validated code
reaches the main branch.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 10

5.2 Continuous Delivery (CD):

The CD pipeline uses GitHub Actions to build Docker images and push them to a container
registry(Docker Hub). Kubernetes pulls these images from the registry, deploying them in
the production environment with minimal downtime.

5.2.1 Deployment Automation and Release Processes

 Docker Image Deployment:
o Upon successful CI checks, GitHub Actions builds and tags Docker images,

then pushes them to the container registry.
 Kubernetes Deployment:

o Kubernetes pulls the latest images and deploys them across clusters. The
platform uses Kubernetes manifests or Helm charts to define deployment
configurations, including replica counts, resource allocations, and networking
rules [3].

o Rolling updates in Kubernetes ensures minimal downtime, replacing containers
incrementally while monitoring health.

5.2.2 Rollback and Recovery Mechanisms

 Automated Rollbacks:
o Kubernetes can automatically roll back to a previous image if issues are

detected during deployment, ensuring stability.
o Versioned Docker images allow the platform to revert to earlier stable versions

in case of critical failures.
 Cluster Monitoring and Health Checks:

o Kubernetes performs health checks (readiness and liveness probes) to monitor
container status. Failed checks automatically restart containers or trigger
rollbacks if the deployment is unstable.

5.2.3 Monitoring and Feedback Loops for Production Releases

 Real-Time Monitoring:
o Kubernetes, combined with monitoring tools like Prometheus and Grafana,

provides real-time insights into application performance, resource usage, and
system health.

 Feedback Loop:
o GitHub Actions notifications and alerts from Kubernetes give developers

immediate feedback on deployment success or failure.
o User feedback is also collected post-deployment to identify potential issues or

areas for improvement.

5.3 Tools and Platforms

 GitHub Actions: Orchestrates the CI/CD pipeline, automating merging, testing, and
deployment tasks upon branch changes.

 Docker: Containerizes each service, enabling consistency and portability across
environments.

 Kubernetes: Manages container deployment, scaling, and orchestration, ensuring the
platform can handle varying loads and maintain availability.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 11

6. Security and Compliance

The JIDEP platform follows stringent security and compliance standards to protect user data,
ensure platform reliability, and adhere to regulatory requirements. The primary framework
guiding this approach is the OWASP Top 10, which outlines the most critical web application
security risks. Below is a table summarising key security considerations aligned with the
OWASP Top 10 and additional compliance measures [4].

Table 1: OWASP Top 10 and additional compliance measures

OWASP Security Considerations Compliance Measures

A01 - Broken Access
Control

Implement strict Role-Based
Access Control (RBAC) and JWT-
based authentication to enforce

user permissions.

Conduct regular access
reviews, and enforce least
privilege principles across

services.

A02 - Cryptographic
Failures

Ensure all data in transit is
encrypted with HTTPS and

enforce secure protocols (e.g.,
TLS 1.2+). Encrypt sensitive data

at rest.

Regularly review encryption
standards, and comply with
GDPR and ISO 27001 for

data protection. Ensure keys
and certificates are rotated

periodically.

A03 - Injection

Use parameterised queries for
database interactions and sanitise

inputs to prevent SQL, NoSQL,
and command injection.

Perform static code analysis
with tools like SonarQube

and CodeQL to detect
injection vulnerabilities.

A04 - Insecure
Design

Implement security by design
principles. Review and enhance
API endpoints, data validation,

and error handling.

Regular security reviews
during development, align
with Secure Development
Lifecycle (SDL) practices.

A05 - Security
Misconfiguration

Harden Docker images,
Kubernetes configurations, and

ensure least privilege for services.
Avoid default configurations.

Run regular configuration
scans using tools like Aqua
Security or Kube-bench to
detect misconfigurations in
Docker and Kubernetes.

A06 - Vulnerable and
Outdated

Components

Use dependency management
tools (e.g., Dependabot in GitHub)

to track and update libraries.

Regularly scan
dependencies for

vulnerabilities with tools like
OWASP Dependency-

Check. Maintain an up-to-
date inventory of

components.

A07 - Identification
and Authentication

Failures

Use multi-factor authentication
(MFA) for sensitive accounts,

secure password storage (e.g.,
bcrypt hashing), and enforce

strong password policies.

Periodic security audits of
authentication mechanisms,

and require MFA for
administrative users.

Comply with ISO 27001
access management.

A08 - Software and
Data Integrity

Failures

Implement integrity checks on
data transmissions, and ensure

that automated CI/CD processes
are secure (e.g., signed commits).

Enforce signed images in
Docker and container

registry policies, use GitHub
Actions Secrets to manage

sensitive information in
pipelines.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 12

A09 - Security
Logging and

Monitoring Failures

Use centralised logging with SIEM
tools for real-time monitoring.

Enable detailed logging for access
and security events.

Ensure logs are retained
according to GDPR

requirements. Regularly
review and respond to

security alerts.

A10 - Server-Side
Request Forgery

(SSRF)

Implement strict URL whitelisting,
disable unused services, and

ensure firewalls restrict server-to-
server requests.

Perform regular security
testing and monitoring for

SSRF vulnerabilities.
Restrict access to sensitive

internal services.

Additional Compliance Considerations

 Data Privacy: Compliance with GDPR and CCPA by ensuring data minimisation, user
consent management, and the ability for users to access or delete their data.

 Security Audits: Conduct regular security audits and penetration tests to identify and
mitigate vulnerabilities, ensuring compliance with industry standards (e.g., ISO 27001,
NIST).

 Secure Development Lifecycle (SDL): Integrate security assessments at each stage
of development, from design to deployment. This includes threat modelling, secure
code training for developers, and automated security testing.

 Incident Response: Define and test an incident response plan to address security
breaches quickly, including notifications, containment, and post-incident review.

7. Performance Analysis

This section will be discussed in the final version of the deliverable.

8. Challenges and Resolutions

The JIDEP platform encountered challenges primarily in communication, scalability, data
consistency, and dependency management. Solutions included optimising services
communication, implementing robust access control, enhancing CI/CD efficiency, and
managing dependency risks effectively. These resolutions ensure platform stability, scalability,
and security.

Table 2: Challege and Resolutions

Challenge Description Risks Identified
Solutions and
Workarounds

Microservices
Communication

Issues

Occasional latency
and failures in

communication
between

microservices,
especially under high

load.

Risk of service
unavailability and

degraded
performance.

Implemented retries
with exponential

backoff, optimised API
Gateway

configurations, and
introduced service

discovery mechanisms.

Database
Performance
Bottlenecks

High query latency
observed in certain

complex queries
under load.

Risk of slower
response times

affecting overall
platform

performance.

Applied indexing to
optimise query speed,
used read replicas for
load distribution, and

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 13

optimised database
queries.

External Service
Dependency

Latency

Latency issues with
third-party service

dependencies affected
platform response

times.

Risk of user
frustration due to
delayed responses

from external
dependencies.

Implemented caching
strategies for frequent
data, used async calls

where possible, and set
timeouts with fallback

data handling.

Managing
Deployment
Rollbacks

Rollbacks in
Kubernetes were

complex, especially
with interconnected

services and database
dependencies.

Risk of downtime
and data

inconsistency
during rollbacks.

Implemented versioned
deployments and blue-

green deployment
strategies to ensure

smooth rollbacks with
minimal impact.

Managing
Deployment
Rollbacks

Rollbacks in
Kubernetes were

complex, especially
with interconnected

services and database
dependencies.

Risk of downtime
and data

inconsistency
during rollbacks.

Implemented versioned
deployments and blue-

green deployment
strategies to ensure

smooth rollbacks with
minimal impact.

9. Testing and Validation

This section will be discussed in the Deliverable 4.2 final version.

10. Documentation and Training

Comprehensive documentation and training were provided to ensure the effective use and
management of the JIDEP platform. Detailed user manuals and technical documentation were
delivered, covering system functionalities, configuration, and troubleshooting. Training
sessions were conducted for both end users and administrators, equipping them with the
necessary skills to operate the platform efficiently. Additionally, knowledge transfer sessions
and support materials, including FAQs and quick reference guides, were made available to
foster long-term usability and enable self-sufficient troubleshooting and maintenance. This
approach ensures that all stakeholders are well-prepared to leverage the platform to its full
potential.

11. Conclusions

In conclusion, the development and deployment of the JIDEP platform have successfully
addressed the project’s core objectives of delivering a secure, scalable, and user-friendly
solution. Through a carefully structured architecture leveraging microservices, Kubernetes
orchestration, and robust CI/CD pipelines, the platform is well-equipped to handle diverse
workloads and integrate seamlessly with external systems. Comprehensive documentation
and targeted training have empowered users and administrators to utilise the platform
effectively, while the established processes for continuous improvement will support future
growth and adaptation.

JIDEP - 101058732

Copyright © JIDEP Project Consortium 2022

 14

References

[1] “System Integration Explained: Methods and Approaches,” Snaplogic, 12 11 2024.

[Online]. Available: https://www.snaplogic.com/blog/system-integration-types-and-
approaches.

[2] B. Douglas, “How to build a CI/CD pipeline with GitHub Actions in four simple steps,” 23
07 2023. [Online]. Available: https://github.blog/enterprise-software/ci-cd/build-ci-cd-
pipeline-github-actions-four-steps/.

[3] “Deployments,” 12 11 2024. [Online]. Available:
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

[4] “OWASP Top Ten,” 12 11 2024. [Online]. Available: https://owasp.org/www-project-top-
ten/.

Acronyms and Abbreviations

Acronym Meaning
API Application Programming Interface

CCPA California Consumer Privacy Act
CD Continuous Delivery
CI Continuous Integration

DLT Distributed Ledger Technology
FAIR Findability, Accessibility, Interoperability, and Reusability

GDPR General Data Protection Regulation
GDFS Global Distributed File System
HTTPS Hypertext Transfer Protocol Secure

ISO International Organization for Standardization
JSON JavaScript Object Notation
JWT Json Web Token
LCA Life Cycle Analysis
MFA Multi-Factor Authentication
OBDI Ontology Based Data Integration

OWSAP The Open Worldwide Application Security Project
RBAC Role-Based Access Control
SDL Secure Development Lifecycle
SIEM Security Information and Event Management
SQL Structured Query Language

SSRF Server-Side Request Forgery
TLS Transport Layer Security
URL Uniform Resource Locator

